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interaction ceases when the two modes are sufficiently far
from synchronism, even though the guides may still be in
close proximity.

The 50-percent (or 3-dB) coupler has more obvious
application. No experimental results are available using
the tapered coupler design but the computer analysis
shows that the improved tolerance to changes in propaga-
tion coefficient brings with it no tightening of the tolerance
on either coupling coefficient or taper slope.

The present discussion has been limited to passive
couplers. The improvement in tolerance would seem to
make electrical control, via the electrooptic effect for
example, more difficult. However, this can be solved by a
suitable circuit rearrangement. For example, switching
can be effected by the use of two passive 3-dB couplers
and a simple phase shifter [5]. It appears that the present
improved design has a direct application here.

Coupling of modes by a periodic perturbation provided
either passively or by electrooptic or acoustooptic means
is well known. This class of coupling can be “tapered” by
simply tapering the pitch of the perturbation, and so
avoiding the severe tolerance restriction on the K vector
relationship.
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Coupling from Multimode to Single-Mode Linear W aveguides
Using Horn—Shaped Structures

ROBERT K. WINN anp JAY H. HARRIS, MEMBER, IEEE

(Invited Paper)

Abstract—Coupling from a multimode to a single-mode linear
waveguide using horn-shaped structures is investigated. The ap-
proximate coupling efficiency is found by numerical solution of
coupled-mode equations that apply to the reciprocal problem, i.e.,
to the problem of propagation in an expanding horn. A coupling
efficiency in excess of 90 percent is calculated when coupling is from
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the principal mode of a sample 50-um-wide multimode waveguide
to a 3-um-wide single-mode guide (A = 0.63 pm). This efficiency
results from a uniformly tapered horn whose length is on the order
of 2 mm, The length can be decreased by using a shaped coupling
region. One such region is found to result in a coupling length of
approximately 1.6 mm.

INTRODUCTION

HE DESIGN of integrated optical devices finds con-
flicting requirements. One area where this is true is in
the design of modulators. On the one hand, the figure of
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merit (the ratio of drive power at center frequency to
bandwidth) improves as the device is reduced to micron
or submicron dimensions. On the other hand, insertion
losses due to scattering and coupling to fiber transmission
lines generally increase with decreased size. The coupling
problem can be eased from an experimental and practical
point of view if an active waveguide whose cross-sectional
area is on the order of square microns can be expanded to
widths on the order of tens of microns. This paper is con-
cerned with the effectiveness with which this physical
expansion can be accomplished.

Fig. 1 is a representation of the type of coupler con-
sidered. The structure consists of a single-mode linear
waveguide, a coupling region, and a multimode linear
waveguide. We are interested in coupling either to the
single-mode linear waveguide or from the single-mode
linear waveguide while keeping most of the energy in the
lowest order mode. If a wave is launched from the smaller
end, then through mode-conversion energy will be cou-
pled to higher order modes as the wave progresses to
wider regions of the guide. Typical dimensions considered
are waveguide heights between 0.5 and 1.0 wavelengths
and coupling regions varying in width from 3 to 50 wave-
lengths.

The analysis used is a coupled-mode approach where
coupling is between the locally normal waveguide modes.
We need only investigate the problem of coupling from
the smaller to the larger waveguide since the reciprocity
theorem allows determination of the coupling efficiency
for the other case.

GENERAL FORMULATION

For the structure shown in Fig. 1 the electric and mag-
netic fields can be decomposed into transverse and longi-
tudinal components. If the longitudinal component is in
the z direction then

E = E t + E z
FI = E-I t "'+' I-I 2z (1)

Then from Maxwell’s equations the transverse fields have
been shown to satisfy the generalized telegrapher’s equa-
tions, which for a uniform waveguide and exp (—iwl)
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time dependence are [1]

oF -
— = deu(I+ {-H. X 2
az
oH -
= eI+ ¥) 8 X E, (2)
az
where
B 1
( = ]E Vtvt
a

Also in keeping with usual notation, u is the magnetic
permeability, e is the dielectric permittivity, I is the
identity dyadie, £ is the unit vector in the z direction, and
w is the angular frequency.

UNIFORM WAVEGUIDE

The transverse fields for a uniform medium can be
expressed in terms of an eigenfunction expansion of the
form

b= [ AR hay) dF,

=00

A= [ 4@k dF, 4)
where I, is the transverse wavenumber, 8 is the longitudi-
nal wavenumber, A4 (8,2) is the mode amplitude, and € and
h are eigenfunctions of the region. In the case of dielectric
waveguides, F and H consist of guided modes plus a con-
tinuous spectrum; therefore in (4) the integral represents
an integral over the continuous spectrum plus a summation
over the guided modes [2].
If the waveguide is uniform, then

A(Bz) = A(B) exp (1B2)
and ¢ and £ satisfy the differential equations
wp/BI 4 ) «h(ky,z,y) a2
we/B(I + )2 X &(ky,y). (5)

Eigenfunctions & and & have been shown to be orthogonal
[3] so we can normalize the fields such that the average
power carried by each mode is given in terms of the mode
amplitudes, i.e., P = 34 A*. This normalization is

é(ﬁp,x,y)
(ko)

It

3(k, — k,)8/1 81

i

[ #etay) X B (R\z) da

BPQBM/I BPQ I (6)

/ 808, (Fpyt,y) X ho*(hyzyy) da

where §(k, — k,’) is the Dirac é-function and 6, is the
Kronecker delta.
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NONUNIFORM WAVEGUIDE

When the waveguide is allowed to change its character-
isties as a function of the direction of propagation, normal
modes can no longer be used. However, & and A form a
complete set for a uniform waveguide so the transverse
fields E, and H, can be represented at any cross section by
summing all of the locally normal modes. Then 8 and %,
are functions of z and the transverse fields become

Bo= [ 4@ ek, @) my) dF,

—®

g, = [ 462G ) d. )

In the uniform case the modes are orthogonal and can
propagate individually ; however, the locally normal modes
do not individually satisfy the boundary conditions so they
cannot propagate alone. In fact, each mode is coupled to
all other modes so mode conversion occurs as they propa-
gate in the waveguide.

COUPLED-MODE EQUATIONS

The mode amplitudes of the locally normal modes can
be found in terms of coupled differential equations [4].
These equations are:

dA .
L By = T Clipk) Ay + [ kA (k)
< »
dd .
E — 8A = /C’(k,,,k,,’)A(k,,’) dk,’ 4+ 3 C(kyky) Ap
Ckphk,) = 3K (k') — K*(kyky')]
dh
Kb/ ly) = [ 22k X 52 (1) da. (8)
Z

tinuous spectrum within the horn for the indicated direc-
tion of propagation. Coupling to the continuous spectrum
may be treated in approximate fashion by using a per-
turbation analysis. Marcuse [5] has examined this cou-
pling for the planar equivalent of the present problem and
shown the radiation to be small for shallow tapers. This
result may be viewed as being a consequence of the lack of
phase match between the continuous spectrum and the
guided waves. Phase match is achieved when a mode is at
cutofi, but for the forward propagation problem the initial
power in higher order modes is zero. Reflected higher order
modes propagating toward the narrow portion of the
guide will radiate in the vicinity of cutoff, but reflections
in the structure can be neglected for small flare angles
because the coupling coefficient is small compared with the
phase mismatch between forward and backward waves.

Assuming radiation from the guide to be zero decouples
the continuous and guided modes in (8). This reduces the
reciprocal problem to solutions of the coupled differential
equations given by

dAJde — 8,4, = 3 Coud . (9)
P

NORMAL MODES OF A UNIFORM WAVEGUIDE

Before (9) can be solved we need to find the eoupling
coefficients, which means solving for the normal modes of
the waveguide. The normal modes for the linear waveguide
of Fig. 2 are given approximately by Unger and Schlosser
[6] and Marcatili [7]. The solution basically neglects
coupling between TE and TM modes of the planar guide
and is useful for guides of large aspect ratio [8]. In regions
69 of Fig. 2 we extend the modal solution to include
exponential decay in both « and y. With this in mind we
define the functions

[[(—1)7K./ (K2 — KoV ] exp [—thas(z + £/2)],  —o <2< —1/2

J(z) = | cos [ko(z + £:/2) — tan™'Ku5/1K, ], —1./2 < 2 < t,/2 (10)
| [K./ (K — Ko?)'?] exp [has(z — 1./2) ], t,/2 < x < o
[[(—1)%K,/a(K2 — Ku)"?] exp [—ikyay], —o <y<0

g(y) =] cos (kyy — tan™! K,4/ikK,), 0<y<t, (11)
| [aK,/e(K,* — K2)'] exp [ihe(y — 4,) ], t, <y < o,

The quantities expressed in (8) with arabic subseripts
correspond to guided modes and those with Greek or no
subseript correspond to the continuous spectrum. Solu-
tions to (8) are difficult to obtain and warrant certain
a priori approximations. Our basic assumption is that
coupling to the continuous spectrum and to reflected
waves can be ignored. The justification is that we treat
propagation from a narrow to a wide guide and we restrict
our consideration to narrow flare angles. In the limits of
small or large flare angles there is no eoupling to the con-

The modes are labeled E,% or E,.” in accordance with
the direction of the transverse component of electric field
and are expressed as products of the preceding functions.
The transverse-field components of well-confined waves for
E,» modes are

ey = Nf(z)g(y)
he =~ — (k® — k?) /Bopey,

N = 2[Bowp/ (ks — kD) t't)) T (12)
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Fig. 2. Linear rectangular waveguide of height ¢, and width ¢,.
The index of refraction for region 1 is greater than all others.

TABLE I
DzeriniTioN oF Terms For Equations (10)—(13)

. X - ] X
i (%) (kax kx3Kx3) + (K_x) (kax kXSKXS)
k k 2 2 k kY 2 .2 i

x3 X X -K x5 X K-K
® %3

t! =t o+
X x

x x5

3
¢

)

2 2.2
kx(y)i '(ki Kt kx(y)i

Eigenvalue Equations for kx and ky:
k.t = tan_l(}( JiK ) + tan_l(l( /iK ) + pm
X% %3 Tx x5 X

-1 . ~1 .
k t =tan (K ,./iK ) + tan (K /iK )} + qw
vy y2' My g/ My’ T 9

¥ modes: K . =k, K.=k./e,
X1 xi yi yi' i

X

E° modes: K , =k_./e, K. =k,

pq xi xit T4 yi yi

Note: The subscript ¢, which refers to the various regions, is
dropped for the guide (z = 1).

and for the Z,,* modes

hy = Mf(z)g(y)
e. > (ks — k.2) /Bweh,
M = 2[Bwe/ (k2 — k2)t./t, e (13)

M and N are the mode normalizations for unit power. The
mode propagation constants 8, effective guide thicknesses
" and &/, and other parameters that appear in (10) and
(11) are shown in Table I. Locally normal modes are
found from (12) and (13) by allowing k. and 8 to vary
with 2. o ' '
COUPLING COEFFICIENTS
The coupling coefficients can now be found from the
locally normal modes. If the variation of & with respect to
zin (8) is due only to width variations with respect to ¢,
then (0h/dz) = (8h/dt,) (3t,/92). The expression to find
the coupling coefficients is : ’

At ah
K =~—/A-- % da.
m =5, ) Fh X G da

z

(14)

From (14) and the description of the mode families,
coupling coefficients between the E,,* and E,.;* modes are
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Fig. 3. Coupling coefficient Cy; as a function of waveguide width
ts for a linear slope such that 8¢,/0z = 1. The waveguide is char-
acterized by ny = 157, n2 = 03 = ny = 1.0, ny = 1.53, ¢, = 0.5
um and N = 0.6328 um.

zero so each family can be investigated separately. Also
when the coupling region is symmetric with respect to the
2 axis, coupling occurs only between modes of the same
parity. That is, odd modes couple only to odd modes and
even modes couple only to even modes. After performing
the integration in (14) we find the coupling coefficient
between the #th and (7 + 2)th mode to be zero until the
(¢ 4 2)th mode begins to propagate; at that point it takes
on a peak value and slowly decays. Fig. 3 is a plot of a
sample Co, assuming 9t,/dz = 1.

Using (12)—-(14) one may verify that such coupling
coefficients as Cy_, are small under the conditions of
interest here and permit a limitation of concern to modes
propagating in the forward direction. The coupled dif-
ferential equations are now solved subject to initial
conditions.

COUPLING EFFICIENCY

The reciprocity theorem provides the mechanism for
relating the solution of the coupled-mode equations to the
efficiency, with which energy is coupled into the narrow
guide when a guided beam or wave is incident at the wide
end. From the relation [9]

f(Ecxﬁ—Exﬁc)-da=o (15)
where the superscript ¢ refers to the direct coupling prob-
lem, it is simple to show that

As(0) = [X 4,0(2) Ap(2) 1/4.(0)

where the summation is over the guided modes at z. In
(16) A,(0) is the guided wave amplitude inside the narrow
guide and A4 ,(2) is the amplitude of the pth mode at some
point 2z along the structure obtained as a solution of the
coupled-mode equations. 4,5(0) and A4,°(z) are the corre-
sponding coupled quantities.

The power coupled into the single-mode narrow guide
is (1/2) A,c(0) A,s*(0) while the amplitude of the coupled-
mode incident at z is given in the absence of reflections as

(16)
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the overlap integral

4,52) = [ (&9 da (17)
where E° is the incident field. The power coupled into the
narrow guide as obtained from (16) is

Po= 3|2 4, (2) 4,(2) /4,(0) .

In the usual situation we expect the incident field to closely
mateh the lowest order mode so that from (17), 4,°(2) ~
1, A,5(z) ~ 0, and from (18)

Pc/PinoidentN I Ao(z)/Aa(O) ’2 = PO(Z)/P‘?(O)

The coupling efficiency is thus approximately proportional
to the square of the solution of the coupled-mode equa-
tions for the lowest order mode. Energy can also be coupled
in via higher order modes in the manner indicated by (18).

(18)

(19)

NUMERICAL CALCULATIONS

The waveguide configuration considered has indices of
refractions ny = 1.57, n2 = ng = nz; = 1.0, and n, = 1.53.
Numerical solutions for linear tapers with a number of
different flare angles and waveguide heights are found for
these configurations. Power in the lowest modes as a func-
tion of length for two typical eases is plotted in Figs. 4 and
5. If A,(z) =1 and A°(z) = 0, n # 0, then the lowest
mode represents the coupling efficiency.

Insight into the results may be obtained by investigating
coupling between two modes with no variations in the
propagation constant or coupling coefficients. That is, we
wish to solve the two equations

ddo/dz — iAo = Crpd,
dAs/dz — 13:45 = ~Crpd,.

Solutions to (20) when mode 0 is launched with unit power
is known to be given by [10]

Py(z) =1 — Fsin? B2

(20)

Py(2) = F sin? Bz (21)
where
' Be? = ((50 - 32) /2)2 + Co?
F = (Cu/B2

In the coupling problem Cy; and 8; are functions of z so
the amplitude of tbe sine-squared term varies with z in the
manner indicated in Figs. 4 and 5.

For the solution in (20) if the phase mismatch
(Bo — B2)/2 is much greater than Cu very little energy
can be coupled to the higher mode. Alternatively, if Co
is much greater than (8y — 8,)/2 nearly all of thé encrgy
can be coupled to the higher mode. ‘

With this insight we return to the coupling problem and
investigate (8 — B:)/2 and C,. Fig. 6is a plot (8o — 82) /2
and C is a function of distance along the coupler. Cy, is
shown for a linear taper with a flare angle of 2°. When a
new mode begins to propagate in the coupler the coupling
coefficient is peaked; however, the difference between 8,
and B, is also peaked so that, at least for small angles,

100 1
—\/_\po(z)

<

10 7

w0
=
L

=~ PERCENT

POWER

Py(2)

) ]
t —
1.0 2.0
Z - MILLIMETERS

Fig. 4. Power distribution in the two lowest modes for an input of
unit power. Width at the input end is 3 um. The waveguide is
characterized by n: = 1.57, na = n3 = n; = 1.0, n, = 1.53,
ty = 0.5 um, and Np = 0.6328 um. The width variation is ¢, =
te + 2z tan 6/2 where {, = 3 yum and 6§ = 1.3°

100
80 1
80 T

40 A

POWER - PERCENT

20 ~
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Fig. 5. Same as figure with § = 3°.
10000 T
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(8,°8,)/2
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Lo 2,0
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Fig. 6. Difference in 8 for the two lowest order modes and coupling
coefficient between them as a function of distance along the
coupler. The structure is the same as in Fig. 5.

coupling remains small close to the cutoff thickness of the
higher order mode.

Coupling efficiency can be improved by shaping the walls
of the coupler. An improved design should, of course, have
zero slope at the junction of the coupler and the linear
waveguide to reduce losses due to radiation. Near the
cutoff width of the higher order mode the slope can be
increased with respect to the linear case and still maintain
low energy conversion. Finally, the slope should decrease
as the width of the coupler increases and phase match is
approached.

A coupler with a width variation such that ¢ = t, +
A(1 — exp [—2z/1]) + 2ztan 0/2 allows for the adjust-
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Fig. 7. Same as Fig. 5 but having a width variation {, = {, -+
A(l — exp [ 3 pm, A = 51 um,

[—2/1) + 2z tan 6/2 for ¢y =
{ = 1 mm, and § = 0.2°,
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Fig. 8. Coupling efficiency at a horn width of 50 um as a function
of coupler length for the linear taper (¢, = t, -+ 22 tah ¢/2) and
the exponential taper ({, = to + A(1 — exp [—2/1]) + 2z tan 6/2)
described in Figs. 5 and 7.

ment of the coupling coefficient. In particular, the coupling
coeflicient can be adjusted as described in the preceding.
Fig. 7 is a typical plot of the power in the two lowest
modes for a coupler of this design.

By comparison Fig. 8 shows the coupling efficiency for a
linear taper of various angles and the improved taper
again for various angles at a width of 50 um. The wave-
guide used in this example has the following indices:
ny = 1.57, ny = ns = ns = 1.0, and ns = 1.53, waveguide
height is 0.5 um and taper goes from 3.0 to 50 um in width.
The free-space wavelength A, equals 0.6328 um.
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CONCLUSIONS

Coupling from a multimode linear waveguide to a single-
mode linear waveguide can be investigated by using
coupled-mode theory. The coupling efficiency is found by
solving what is called the reciprocal probleni then applying
the reciprocity theorem. When coupling efficiencies greater
than 90 percent are desired, calculations for the sample
structure considered here show that the coupling region
must be on the order of 2000 wavelengths for a linear taper.
This distance is appreciably reduced by shaping the cou-
pling region.

Ostrowsky et al. [12] have recently reported fabrica-
tion of horn-shaped couplers using electron resist for the
waveguides and a computer-controlled scanning-electron
microscope to produce the shape. Quantitative results of
coupling efficiency were not reported.
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