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interaction ceases when the two modes are sufficiently far

from synchronism, eventhough the guides may still bein

close proximity.
The .50-percent (or 3-dB) coupler has more obvious

application. No experimental results are available using

the tapered coupler design but the computer analysis

shows that the improved tolerance to changes in propaga-

tion coefficient brings with it no tightening of the tolerance

on either coupling coefficient or taper slope.

The present discussion has been limited to passive

couplers. The improvement in tolerance would seem to

make electrical control, via the electrooptic effect for

example, more difficult. However, this can be solved by a

suitable circuit rearrangement. For example, switching

can be effected by the use of two passive 3-dB couplers

and a simple phase shifter [5]. It appears that the present
improved design has a direct application here.

Coupling of modes by a periodic perturbation provided

either passively or by electrooptic or acoustooptic means

is well known. Thk class of coupling can be “tapered” by

simply tapering the pitch of the perturbation, and so

avoiding the severe tolerance restriction on the K vector

relationship.
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Coupling from Multimode to Single-Mode Linear Waveguides

Using Horn-Shaped Structures

ROBERT K. WINN AND JAY H. HARRIS, MEMBER, IEEll

(Invited Paper)

AfMract-Coupliig from a multiiode to a single-mode linear the principal mode of a sample 50-Mm-wide multimode waveguide
waveguide using horn-shaped structures is investigated. The ap- to a 3-Pm-wide single-mode guide (k = 0.63 yin). This efficiency

proximate coupling efficiency is found by numericaf solution of results from a uniformly tapered horn whose length is on the order
coupled-mode equations that apply to the reciprocal problem, i.e., of 2 mm. The length can be decreased by using a shaped coupling
to the problem of propagation in an expanding horn. A coupling region. One such region is found to result in a coupling length of
efficiency in excess of 90 percent is calculated when coupling is from approximately 1.6 mm.
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Fig. 1. General structure to be used for eoupling light to a single-
mode waveguide.

merit (the ratio of drive power at center frequency to

bandwidth) improves as the device is reduced to micron

or submicron dimensions. On the other hand, insertion

losses due to scattering and coupling to fiber transmission

lines generally increase with decreased size. The coupling

problem can be eased from an experimental and practical

point of view if an active waveguide whose cross-sectional

area is on the order of square microns can be expanded to

widths on the order of tens of microns. Thk paper is con-

cerned with the effectiveness with which this physical

expansion can be accomplished.

Fig. 1 is a representation of the type of coupler con-

sidered. The structure consists of a single-mode linear

waveguide, a coupling region, and a multimode linear

waveguide. We are interested in coupling either to the

single-mode linear waveguide or from the single-mode

linear waveguide while keeping most of the energy in the

lowest order mode. If a wave is launched from the smaller

end, then through mode-conversion energy will be cou-

pled to higher order modes as the wave progresses to

wider regions of the guide. Typical dimensions considered

are waveguide heights between 0,5 and 1.0 wavelengths

and coupling regions varying in width from 3 to 50 wave-

lengths.

The analysis used is a coupled-mode approach where

coupliig is between the locally normal waveguide modes.

We need only investigate the problem of coupling from

the smaller to the larger waveguide since the reciprocity

theorem allows determination of the coupling efficiency

for the other case.

GENERAL FORMULATION

For the structure shown in Fig. 1 the electric and mag-

netic fields can be decomposed into transverse and longi-

tudinal components. If the longitudinal component is in

the z direction then

E= Et-l-En

time dependence are [1]

a~t

z
= kJ/J(z+{)”lit x.$

dHt
— = Le(l+ 0 “.4 x fit
(%3

where

(2)

(3)

Also in keeping with usual notation, u is the magnetic

permeability, e is the dielectric permittivity, Z is the

identity dyadic, $ is the unit vector in the z direction, and

u is the angular frequency.

UNIFORM WAVE GUIDE

The transverse fields for a uniform medium can be

expressed in terms of an eigenfunction expansion of the

form

where ip is the transverse wavenumber, b is the longitudi-

nal wavenumber, A (@,z) is the mode amplitude, and z and

h are eigenfunctions of the region. In the case of dielectric

waveguides, ~ and ~ consist of guided modes plus a con-

tinuous spectrum; therefore in (4) the integral represents

an integral over the continuous spectrum plus a summation

over the guided modes [2].

If the waveguide is uniform, then

A (fl,z) = A ((3) exp (i@z)

and z and ~ satisfy the cliff erential equations

Eigenfunctions z and ~ have been shown to be orthogonal

[3] so we can normalize the fields such that the average

power carried by each mode is given in terms of the mode

amplitudes, i e., P = &M*. This normalization is

H=i!7t+ ii=.
J

Then from Maxwell’s equations the transverse fields have

been shown to satisfy the generalized telegrapher’s equa- where 6(?cP–- k~’) is the Dirac &function and 6P* is the

tions, which for a uniform waveguide and exp (– id) Kronecker delta.
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NONUNIFORM WAVEGUIDE

Whenthe waveguide is allowed to change its character-

isticsas a function of the direction of propagation, normal

modes can no longer be used. However, z and i form a

complete set for a uniform waveguide so the transverse

fields ~, and ~, can be represented at any cross section by

summing all of the locally normal modes. Then @ and lcP

are functions of z and the transverse fields become

/

co
B, = A (6(.2) ,Z)z(i, (z) ,Z,y) dip

—m

H, =
/

m A (@(z),z)i(k, (z) ,Z,y) dip. (7)
—.

In the uniform case the modes are orthogonal and can

propagate individually; however, the locally normal modes

do not individually satisfy the boundary conditions so they

cannot propagate alone. In fact, each mode is coupled to

all other modes so mode conversion occurs as they propa-

gate in the waveguide.

COUPLED-MODE EQUATIONS

The mode amplitudes of the locally normal modes can

be found in terms of coupled differential equations [4].

These equations are:

dAg

dz –
i@~A~ = Z C(&~Q)Ap + ~ C(~P,~Q)A (~q) d~p

P

dA
—— iPA=

/
C(kp,k;)A(kP’) dk,’ + Z C(LJWA,

cl.?

C(k,,kp’) = ~[K(kp’,kp) – K*(kp,kP’) ]“

K (kp’,k,) =
/

2?.z(?cP’) X ~ (kP) da. (8)

tinuous spectrum within the horn for the indicated direc-

tion of propagation. Coupling to the continuous spectrum

may be treated in approximate fashion by using a per-

turbation analysis. Marcuse [5] has examined this cou-

pling for the planar equivalent of the present problem and

shown the radiation to be small for shallow tapers. This

result may be viewed as being a consequence of the lack of

phase match between the continuous spectrum and the

guided waves. Phase match is achieved when a mode is at

cutoff, but for the forward propagation problem the initial

power in higher order modes is zero. Reflected higher order

modes propagating toward the narrow portion of the

guide will radiate in the vicinity of cutoff, but reflections

in the structure can be neglected for small flare angles

because the coupling coefficient is small compared with the

phase mismatch between forward and backward waves,

Assuming radiation from the guide to be zero decouples

the continuous and guided modes in (8). This reduces the

reciprocal problem to solutions of the coupled differential

equations given by

dA,/dz – i&Aq = Z CPQAP. (9)
P

NORMAL MODES OF A UNIFORM WAVEGUIDE

Before (9) can be solved w-e need to find the coupling

coefficients, which means solving for the normal modes of

the waveguide. The normal modes for the linear waveguide

of Fig. 2 are given approximately by Unger and Schlosser

[6] and Mareatili [7]. The solution basically neglects

coupling between TE and TM modes of the planar guide

and is useful for guides of large aspect ratio [8]. In regions

6–9 of Fig. 2 we extend the modal solution to include

exponential decay in both x and y. With this in mind we

define the functions

I
[(–l)pK*/(K~2 – K~#)’/2] exp [–ik~s(x + t~/2) ], – ~ < x s –tz/2

~(z) = cos [IL(z + tz/2) – tan-’K=s/iKx], –tz/2 < x < tz/2 (lo)

[KJ (KZ2 – K,,’) ‘“] exp [ik=,(z – t./2) ], tJ2<x<m

[

[(– 1) %,KV/c,(KV’ – KVA’) ‘/2] exp [–i?cv~y], —W<y<o

9(v) = cos (kvu – tan-l KJikKV), O<y<tv (11)

[e,Kv/e, (KV2 – K@2) 11’] exp [ikUZ(V – t.)], tu<y <m.

The quantities expressed in (8) with arabic subscripts

correspond to guided modes and those with Greek or no

subscript correspond to the continuous spectrum. Solu-

tions to (8) are difficult to obtain and warrant certain

a priori approximations. Our basic assumption is that

coupling to the continuous spectrum and to reflected

waves can be ignored. The justification is that we treat

propagation from a narrow to a wide guide and we restrict

our consideration to narrow flare angles. In the limits of

small or large flare angles there is no coupling to the con-

The modes are labeled EpgU or EpqZ in accordance with

the direction of the transverse component of electric field

and are expressed as products of the preceding functions.

The transverse-field components of well-confined waves for
EpqV modes are

eu = Nj(z)g(y)

lV = 2[@w#/ (?Cl* — kzz) tz’tv’) ]1/2 (12)
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Fig. 2. Linear rectangular waveguide of height tv and width ts.
The index of refraction fo~ region 1 is greater than all others.

TABLE I
DEFINITION OF TERMS FOR EQUATIONS (10)-(13)

K kxKx-kx3Kx3 k K -kx5Kx5
t;. txt+(;)( )++(>) (’x )

x3 x K~-K;3
K2_K2

x5 x
x x5

kK-k2K2 kK-k4K4

t;=ty+ +(:)(
~2-K2

Y)++(>)(yy
K2_K2

‘)
y2 y

Y Y2
yl+ y

Y Y~

@.(k:-k2 Z?j
- ky)

x

k ~(y)i =(k~ - k; + kf(y)i)%

Eigenvalue Equations for kx and ky:

kxtx = tan-1 (Kx3/iKx) + tan-1 (Kx5/iKx) + p.

kyty = tan ‘1( Ky2/iKy) + tan ‘l(KyU/iKy) t qm

Ey modes: Kxi . kxi Kyi = kyi/~i
Pq

E;a modes: K = kxi(ci K =k
xi vi vi

Note: The subscript i, which refers to the various regions, is
dropped for the guide (i = 1).

and for the EP~z modes

h. = Mf(z)g(y)

e. E (k12 — kz2) /fbehv

M = 2[ioe,/ (k,2 – k.’) tz’t~]’l’. (13)

M and N are the mode normalizations for unit power. The

mode propagation constants B, effective guide thicknesses

t%’and tv’,and other parameters that appear in (10) and

(11) are shown in Table I. Locally normal modes are

found from (12) and (13) by allowing kfi and @ to vary

with z.

COUPLING COEFFICIENTS

The coupling coefficients can now be found from the

locally normal modes. If the variation of i with respect to

z in (8) is due only to width variations with ‘respect to t.

then (c31/c3z) = (dZ/&) (dtJ6’z). The exprestiion to find

the coupling coefficients is

(14)

From (14) and the description of the mode families,

coupling coefficients between the EPgX and EPaVmodes are

u-t-l-t.
10 20 30 40 50

WIDTH - MICRON

Fig. 3. Coupling coefficient CO, as a function of waveguide width
t.for a linear slope such that W.idz = 1. The waveguide is char-
acterized by nl = 1.57, nz = ns = n~ = 1.0, n~ = 1.53, tv= 0.5
pm and XO == 0.6328 ~m.

zero so each family can be investigated separately. Also

when the coupling region is symmetric with respect to the

x axis, coupling occurs only between modes of the same

parity. That is, odd modes couple only to odd modes and

even modes couple only to even modes. After performing

the integration in (14) we find the coupling coefficient

between the ith and (i + 2) th mode to be zero until the

(i + 2)th T,ode begins to propagate; at that point it takes

on a peak value and slowly decays. Fig. 3 is a plot of a

sample C02a&uming &Z/6’z = 1.
Using (12)-( 14) one may verify that such coupling

coefficients as CO,–P are small under the conditions of

interest h&e and permit a limitation of concern to modes

propagating in the forward direction. The ccwpled dif-

ferential equations are now solved subject to initial

conditions.

COUPLING EFFICIENCY

The reciprocity theorem provides the mechanism for

relating the solution of the coupled-mode equations to the

etliciency, with which energy is coupled into the narrow

guide when a guided beam or wave is incident at the wide

end. From the relati~n [9]

J (~c Xii- ~xi?c).dci=O (15)

where the superscript c refers to the direct coupling prob-

lem, it is simple to show that

A.’ (0) = [~ A,’ (Z) AP(2) ]/Ao(o) (16)

where the summation is over the guided modes at z. In

(16) AO(0) is the guided wave amplitude inside the narrow

guide and A ~(c) is the amplitude of the pth mode at some
point e along the structure obtained as a solution of the

coupled-modle equations. AOC(0) and AP’ (.z) are the corre-

sponding coupled quantities.

The power coupled into the single-mode narrow guide

is (1/2) AOC(0) AO’* (0) while the amplitude of the coupled-

mode incident at z is given in the absence of reflections as



96 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 197,5

the overlap integral

IApe(z) = (Zp.Ii)da (17)

where l?iis the incident field, The power coupled into the

~arrow guide as obtained from (16) is

P.= *l~Ap’(z).Ap(2) /Ao(o) l’. (18)

In the umal situation we expect the incident field to closely

match the lowest order mode so that from (17), A.”(z) =

1, A,C(z) w O, and from (18)

P~/?’,.~,~~~~ ~ I A.(Z) /A.(O) 1’ = P.(Z) /P.(O) . (19)

The coupling efficiency is thus approximately proportional

to the square of the solution of the coupled-mode equa-

tions for the lowest order mode. Energy can also be coupled

in via higher order modes in the manner indicated by (18).

NUMERICAL CALCULATIONS

K17he waveguide configuration considered has indices of

refractions nl = 1.57, nz = ns = nb = 1.0, and m = 1.53.

Numerical solutions for linear tapers with a number of

different flare angles and waveguide heights are found for

these configurations. Power in the lowest modes as a func-

tion of length for two typical cases is plotted in Figs. 4 and

5. If Ao(z) = 1 and Ax(z) = 0, n # O, then the lowest

mode represents the coupling efficiency.

Insight into t~~eresults maybe obtained by investigating

coupling between two modes with no variations in the

propagation constant or coupling coefficients. That is, we

wish to solve the two equations

dAJdz – i~oAo = C02A2

dA2/dz – @tA2 = -– Co2Ao. (20)

Solutions to (20) when mode O is launched with unit power

is known to be given by [10]

P.(z) = 1 – F sin2 ~~

P2(z) = F sin’ @bz (~~)

where

~b’ = ( (60 – $2) /2)2 +’ C022

F = (c@’@b) 2.

In the coupling problem Coaand Pi are functions of z so

the amplitude of the sine-squared term varies with z in the

manner indicated in Figs. 4 and 5.

For the solution in (2o) if the phase mismatch

(OO– i%) /2 is much greater than Co, very little energy
can be coupled to the higher mode. Alternatively, if C02

is much greater than (@O— ~z) /2 nearly all of the energy

can be coupled to the tigher mode.

With this insight we return to the coupling problem and

investigate (80 - PZ)/2 and Cot. Fig. 6 is a plot (f?o – I%) /2

and C02 is a function of distance a,long the coupler. Coz is

shown for a linear taper with a flare angle of 2°. When a

new mode begins to propagate in the coupler the coupling

coefficient is peaked; however, the difference between @o

and B’ is also peaked so that, at least for small angles,

‘ “0L2’
1,0 2,0

Z - MILLIMETERS

Fig. 4. Power distribution in the two lowest modes for an input of
unit power. Width at the input end is 3 pm. The waveguide is
characterized by ni = 1.57, n, = n, = n, = 1.0, n, = 1.53,
b = 0.5 pm, and ho = 0.6328 ~m. The width variation is t.=
t,+ 22 tan 0/2 where t. = 3 pm and o = 1.3°.

100

80

20

1,0 2;0

Z - MILLIMETERS

Fig. 5. Same as figure with o = 3°.

10000

T
7500

~L

(00”~2112

5000

25113 c
02

1.0 2,0

z - f41LLu+EwRs

Fig. 6, Difference in D for the two lowest order modes and eollpling
coefficient between them as a function of distance along the
coupler. The structure is the same as in Fig. 5.

coupling remains small close to the cutoff thickness of the

higher order mode.

Coupling efficiency can be improved by shaping the walls

of the coupler. An improved design should, of course, have

zero slope at the junction of the coupler and the linear

wave&ide to reduce losses due to radiation. Near the

cutoff width of the higher order mode the slope can be

increased with respect to the linear case and still maintain

low energy conversion. Finally, the slope should decrease

as the width of the coupler increases and phase match is

approached.

A coupler wjth a width variation such that t. = t. +
A (1 – exp [–z/1]) + 22 tan 0/2 allows for the adjust-



HARRIS: COUPLING WAVEGUIDES 97WINN AND

.

1,0 2.0

Z - MILLIMETERS

Fig. 7. Same as Fig. 5 but having a width variation f= = t,+
A(I – exp [–z/l]) + 2,z tan /3/2 for to = 3 pm, A = 51 pm,
1 = 1 mm, and o = 0.2°.

100 T

r

EXP

; go

:
%

‘ r

LINEAR
; 80

:
:
k

w 70

1>0 2+0 3,0 4,0

Z - MILLIMETERS

Fig. 8. Coupling efficiency at a horn width of 50 pm as a function
of coupler length for the linear taper (tz = to + 22 tan @/2) and
the exponential taper (tz = t, + A (1– exp [ –z/l]) + 22 tan 6/2)
described in Figs. 5 and 7.

ment of the coupling coefficient. In particular, the coupling

coefficient can be adjusted as described in the preceding.

Fig. 7 is a typical plot of the power in the two lowest

modes for a coupler of this design.

By comparison Fig. 8 shows the coupling efficiency for a

linear taper of various angles and the irnprovbd taper

again for various angles at a width of 50 pm. The wave-

guide used in this example has the following indices:

nl = 1.57, nz = ns = n5 = 1.O, and nb = 1.52, waveguide

height is 0.5pm and taper goes from 3.0 to 50 ~m in width.

The free-space wavelength AO equals 0.6328 ~m.,

CONCLUSJONS

Coupling from a multimode linear waveguide to a single-

mode linear waveguide can be investigated by using

coupled-mode theory. The coupling eflicieney is found by

solving what is called the reciprocal problem then applying

the reciprocity theorem. When coupling efficiencies greater

than 90 percent are desired, calculations for the sample

structure ccmsidered here show that the coupling region

must be on the order of 2000 wavelengths for a linear taper.

This distanoe is appreciably reduced by shaping the cou-

pling region,

Ostrowsky et al. ~12_Jhave recently reported fabrica-

tion of horn-shaped couplers using eleOtron resist for the

wa~eguides and a computer-controlled scanning-electron

microscope to produce the shape. Quantitative results of

coupling efficiency were not reported.
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